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ABSTRACT

Various mathematicai expressions that wmay be used to repre-
sent experimental data are presented, Specific methods of linear
transfornation and the general least-squayes procedure for
functions having nonlinear parameters are described in detail.

In addition, brief discussions are given for tha following classes
of functions: linear combinations of exponentials, asymptotic
regression, frequency functions, and polynomials, References
are provided that describe the methcdology in greater detail,
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I. INTRODUCTION

In the analysis of experimental data, it is often desirable to obtain
2 mathematical expression of the relatiouship hetween two variables. The
determination of an empirical formila, whose curve will be an appropriate
fit for the plotted data, depends upon an understanding o: the physical
significance of the data and a knowledge of the general nature of a wide
varietv of curves. 0Jnce the equation of a curve has been selected for a
set of data, rhe constants of the equation must be determined by one of
the metnods available for fitting a curve to experimental data.

The objactive of this paper is to present in as concise a form as pos-
sible methuds for handling a wide variety of functions. The methods dis-
cussed here represent the suthor's investigation into various techniques
of curve fitting. Although the {nvestigation has by no means been exhaus-
tive, it is hoped that this -ollection will serve at least to hasten the
work of others who wish to apply the methods of curve fitting, by providing
them with a summary of the available straightforward methods, sud by
directing them to some of the literature available on the treatment of
more complex curves. In the interest of keeping the paper brief and easy
to follow, proofs and numerical examples of the sathivds discussed have
been omitted. It is recoumeded that the reader refer directly to the
literature for further details un the method he finally decides to employ.




I1. STRAIGHT-LINE TRANSFORMATIONS

A. INTRODUCTION

If the experimental data, when plotted on arithmetic coordinate paper, .
do not approximate a straight line y = a + bx but do seem to apyroximate a
smooth curve, the shape of the curve and an understanding of the nature of
the experiment may suggest the eguation of the curve that will tfit the .
points wost closely. A very helpful way of verifying the appropriateness
of a particular equation for a set of data is to transform the data in such
a way that a straight-line plot y' = a' + bx' {s obtajred, If a straight
line is achieved through some tranaformation, the equation corresponding to
the transformation will be known to be satisfactory and, furthermore, the
parameters of the equation can be evaluated directly from the linear form
of the equation,

Table 1 is furnished as a quick reference to the methodas of atraight-
line transformation available for fitting curves to experimsntal dats. A
collection of graphs (Figure 1) is included to illustrate the sffect of
variation of the parameters (c>nstants) in the equations preseated in the
table. The general techniquas of linear transformation displayed in the
table are cutlined in Section II. Por numerical examples and more detafled
explanations of the methods of transformation, the resder is directed to
the Literature Cited.!™® Joburor! treats the videst varisty of gemmrsl
types of equations, and his took wwuld be recommanded as & first reference.
The other bouks treat much of the same material ss Johnson does, but David®
and lunntnﬁ’ present, in addition, a few of the more specialized procedures
that are given in Tadle I.

8, GENERAL PROCEDURES POR LINEAR TRANSYORMATION

1. Reciprocals or logarithes [Equations (1), (2), .3), (&), and (3) of -
Table 1)

Logarithms or reciprocals of one or bdoth of the variadles may de
teken befora the values are plotted on arithmetic coordinate paper. Alter-
natively, logarithmic or reciprocal paper may dea used to eliminate the need
for making these additional calcuistions.

2. Selection of & Point un the Experimentsal Curve [Equations (la), (6),
and (7) <! Tedle 1] .

A particular peint (xj, yj) on the experimental curve may be used
to reduce the original equation to a linear form in two parsmeters. Occa-
s{onally, wmore than one point {s used in this way.

3. Cowbinstion of Methods (1) snd (2) [Equations (4a), (&b), (Se), (SH),
and (6a) of Table 1]




4. Combination of Two Simpie Curves

(2) Sum of two simple equations, each of which influences a parti-
cular portion of the curve (Method '4 of Table I).

When a portion of the Jdata appears to be linedar on some type of
coordinate paper, wnhereas the remainder snows a distinct curvature, the
linear portion may be fitted btv the appropriate formula, ani rhen the
deviations of the rest of the data from this straight line may be fitted by
a second fuactfon. The final equation will be the sum of the two functions,
each function being negligible for the portion of the curve where the other
function has the most influence.

(b) Sum of twe simple equations. borh of which exert influence over
the entire range of the cutve [Equations (10), (11), and (12) of Table Il.

Although no portiun of the plotted curve ia linear on any of the
types of coordinate paper, some curves may be represented by a sum of
simple equations. 1In this crse, ratios of the succeasive values of y ar:
plotted on arithmetic coordinate paper to obrain s strsight line th-t uill
give the values of two of the paramsters. The remaining two psramsters
can then be evaluated from the original equation.

{c) Tvo separate equustions, each valid for s restricred range of
“he variables.

Vhen {t is fmponsible to vepresent & rot of data by an equation
involving fev constants, it s sometiwmes advisable to fit different
equations to distinct portions of the curve.*

C. DITERMIRATION OF THE CONSTANTS

Orce the equation hus dean selectad, there are several ways in which
the parameters of the curve may be sprroximsted, agpending on the degree
of accurscy tvequired. Refercnce will de made later in the paper to the
principle of maximum likeltihood and the mathod of soments, wvhich are useful
[n the estiwmation of paremmters for certsin types of functions. The three
moxt commonr wethods .f parsmeter estimation, given {n the otder of the
accuracy afforded, are the method of least squites, the wethod of averages.
and the sethod of selected points. Since thess three methods are fully
described in standard texthooks, there ts no need to give & detailed ex-
planstion nf them here. The msthod of lesst squatres gives the bext f{t
and iz generslly relied upon for sccurste estimates of the parsmeters.
Nodern-day computing facilities relidve the prodbiemes once twposed dy the
laborious compulstions required {n the leait-squares process. A wodifica-
ti: of the sethod of averages has been reported by Mair and Shrivastava'.
Thelr wethod of group averages can be ewployed to give greater precision
than would be (urnished by the wethod of aversges with lpss arithmetic
lator than would be requited by the method of lesst squares.
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The method of selected points, though least accurate, is very simple
and can be used to get an immediate rough idea of the nature of the para-
meters. In employing this method, the straight line is usually fitted
manually to the plotted points. The arbitrary eye fit is the main factor
contributing to the inaccuracy of thic .iethod of estimating the parameters.
Askovitz’ has described a very interesting method of fitting a least-
squares straight line to a series of points by a methcd tnat is entirely
graphical. Since this method is not well known and can considerably iwmprove
the accuracy of the method of selected points (provided only that the
x values of the points are equally spaced), it will be described briefly
in the next section. For proof of the method, the reader should refer to
the original work.

D. SHORT-CUT GRAPHIC METHOD POR FITTING THE BEST STRAIGHT LINE TO A SERIES
OF POINTS ACCORDING TO THE CRITERION OF LEAST SQUARES¥*

Given: Five points—A, B, C, D, E, (or any number of points), with
values of x at equal intervals & x. Consider the value of A x to be a
spacing unit.

Method:

(a) Place straightedge so that it joins A and B (Figure 2). Draw
a straight line from A to a point 2/3 of a spacing unit farther. The point
found is B'. Note that B' lies on a vertical line 2/3 A& x to the right
of A.

(b) Place straightedge so that it joins B' to C. Starting at A',
draw a straight line 2/3 of a spacing unit farther. The point found is
C', and lies on a vertical line 2/3 4 x to the right of B'.

(c) Continue in this manner. Call the la:t point found T.

(d) Now start at E and go backwards in the ssws msnner. Call the
last point found U.

(e) UT is the line of best fit by least sguares for the points
A to E.

(f) As & chack on the procedure, x values of &, U, T, and £ should
be found to be equally spaced.

» “Advancing Centroids Technique" (condensed from a paper by Askovits').




Least-Squares Line

spacing unit (A x)

-
X

Figure 2. Graphic Methoc of Fitting Straight Tine.

E. EXPLANATION OF TABLE 1

For esch of the equations ststed in the firet calumn of Table 1, the
second column gives the coordinates that will yield a straight line on
arithastic coordinate papar vhen the equation is appropriate for the given
data. Cclumn 3 gives the corresponding linear equation from which the
paramsters of the function msy be determined., One refersrce for each !
wathod is cited in the last column.

The most cosmon methods of linesr transformation ar: descrided in {tems
(1) through (3) of Table I. Pamiliarity with these tecniques will assist _
the reader {n understanding the later antries in the ta:le. Item (6)
describes o mathod for transforming & parsbola to linesr form. A aumber of
variations of the basic equation for a parabola are givin {n items (6a)
through (6g). Once these variations have been reduced o the basic parsbols
equation by one of the transforwstions outlined in items (1) through (3),
they may de handled by the genarsl method for & parsbula as explained in
item (6).

Determination of the parsmeters in Equations (8) through (1)) requires
tha use of tvo linesr equations. Tha first linear equation yields estimates .
of two of the parameters, which are used subsequantly i{n the second eguation
to find the remsinder of the parameters. The msthod presented (o {tem (14)
of the table is appropriats ~aly vhen a portion of the plotted data is
linesr aither (mmediately or after some transformation has been perforemd.
It should be noted that Rquations (8), (10), and (12) may bde handled by
soTe general wethods when the specisl coandition of partial linearity
necessary for Method (14) is not present,
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Whin the symbols A x and A y appear iu items (6) through (11), they
signify the differences between successive values of the data, so that
ANX =X 4] ~Xgand Ay =y 41 - v, The use of the symbol Ay in

Method (14) is explained in the table,
A comment is necded conceruing Equation (14i) in the taible,

Q
2 cosh {n(X - x)]

v = (a + bx) +

which can also be written in the form

The final term, § = L
2 cosh {n(X - x)]

X , introduces a bump into the curve. The signifi-

en(z - %) + en(x - f)
carce of the parameters X and a is explained in the table. The effect that
this term has when added to equations for a straight line and for a parabola

is illustrated in Pigures 3 and 4.

§ =

e .5x% - Sx + 13.5+4 8
y .

a® ) -
y X=8
nea
b e <
2 cosh [n Ez - xi]
&

b T cosh (4 (8 - %))

Craph of Variation of Equation (l41).

Figure ).




y-a+bx+6
a= 1.5
y-1+x+5
y n=.5
s Q
® 2 cosh n (X - %)
=5
i
o=l
nw2

Pigure 4. Graphs of Bquation (l41).
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I1i. METHOD OF DIFFERENTIAL CORRECTION

A. (NTRODUCTION

Equations chat contain nonlinear parameters, and for which no trans-
formation will afford a linear relation among the parameters, canrot be
handled by the usual methods described in Section II. A geneczal method that
will handle such formulas is known as the method of differential correction.
This method is an iterative process for which initial estimates of tt¢ para-
meters are required. By considering the approximate values of the constants
and the corrections to each of these values, the original function can be
expanded in a Taylor's series, which will be linear in the corrections when
terms of higher order than the first are ne-lected. Either the method of
averages or the method of least squares will then yield the values of the
corrections. Addition of the corrections to the starting values will fur-
nish new estimates and the process may be repeated fcy improved accuracy.

Modern high-speed computers overcome the difficuities once pcsed by the
rather lengthy calculations necessitated by this method. Purthem:: e, the
method of least squares is usually selected for machine tolution of the
cerresponding regression equation because accuracy, rather than ease of com-
putation, is of primary concern. The method of differential correction is,
as a result, often referred to as the "general least-squares msthod for non-
linear parameters,"

This iterative procedure has the limitation that the original estimates
of the parameters must be close enough to the true valuas that higher order
terms of the Taylor's series may be omitted wi{thov’ affecting the convergence
ol the procedure. Starting values may orcen be ohtained from a knowledge
of the physical characteristics of the prohlem whnse data are being analyszed.
Certain graphical techniques anslogous to those discribed in Section II
will also be helpful for certain types of data. °f an snslog computer ia
availatle, {t can furnirh starting values for a v.de variety of functions,
ty winimizing the ares between a series of line segments drewn through the
data peints, and the curves obtained by varying the patamsters in the
equation salected for represvuntation of the data.

Although the wethod of differential correction is often reported in the
litecature, it is not aluways described in a detailed and notationally simple
ranner. For the beneli. .{ the reader not fasiliar with this msthod, the
suthe- tas included & summary of the waterial presented in the references.
Jor straightforvard descriptions of the sathod, the reader may refer to
fianing’, Scarborough’ , and Nielsor’, More theoretical discussions are
glven by Dewing' and Cuest’®, Williams'' und Turner, Monroe, and Lucas '
2wplov a madification cf the pivcedure. Specific epplications of the
pec sy are repc-ted by Howell'? and Berkson and cugc“.
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B. EXPLANATION OF THE METHOD
Consicder a function

y = f (x; a, b, <), @)
where x and y are the variables, and a, b, and c are the parameters. Let
a0, bo, to be approximate values of a, b, c, and let A a, &b, A ¢
represent corrections to these initial values such that

a=gs5+A0a

besbo+Ab (2)

cmcgtdec,
A first approximation to the true function is

Yo = £ (x; 8o, bo, <o). &)
Rewriting Equation (1) in terms of (2) yields

yef(x; s0¢0 a8, bog+ &b, co+ Ac) (b)

Equation (4) may be expanded by Tayloer's theorem for a function in several
veriables to obtain

. , Of ¥4 3
y = f (x; ag, bo, o) * x;; Aa+ S;; Ab 4 8;: dec (s)

4+ higher order teruas ind a, & b, A ¢,

vhere g{: seans 2!15*5&!;21 svalusted at a v a5, b = D, and c = ¢, .

Neglecting the higher ordar teres, substituting and transposing y,,
Equation (4) becowms

af

Y a
y yo‘mC..‘;;;ObQ»

sab < . (6)

which is linear in the corrections H a2, 4 b, & ¢,

Equation (6) corresponds to the multiple linssr-regression squation

RewpApgZotAl 2l ¢A22; M
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where
R=y-yo .
A,) = A a Zu = a—g“
aao
Al =/ b 21 = é—f——
b
Ay =L ¢ 22 = _b_f__
aCo

nis equation may be solved by the ustal method of least squares to obtain
the values for & a, &4 b, and A c.

C. MODLFICATION OF THE METHOD

Marny functions contain both lirzar and nonlinear parameters. Turner'?
has reported a modiiication of the general least-squares wmethod that elimi-
aates the necessity of using any trial values for the lineaar parameters,
thus reducing the amount of work involved in the solutiun. In Turner's
method, the regression cquarion is taken from Equation (3) without trans-
pesing y,.  He has found that the lincear parameters may then be computed
directly, thus eliminating "he terms contzining partisl derivatives with
respect to the linear parsmsters. For example, if f (x; a, b, ¢) {s a
function in wvhich a and b are nonlinear paramaters and ¢ is a linear parvra-
reter, the regression equation will ke

y = { (x; a0, Yo, €) + %f; Ha+ gé; Ab, (8)

where gﬁ- and 3¢ ate evaluated at a, and by, but ¢ remsina va-fable. This

vndt(lcn?lnn congtdcrnblv simpliiies the general wtthod of least squares,

by requiring {nitial estimater of oniy the nonlin.ar paraseters, aud by pur-
sitting the direct use of the obeerved y values, rather than requiring
~al.ulation of the residuals R w y - y,,

0. ERAMPLES
Consider tha problem of fitting the function

f {x: 8, b) = y & ad¥

to a st of oxperimantal data. Although this function contains a nonlinear
parameter b, the squation does happen to bde one of the types for which a




linear transformation i{s available. The regular least-squares procedure for
linear parameters, when applied to the linearized data, will supply directly
the best astimates of the parameters, and hence would usually be employed
for this simple formula, It i{s interesting, “owever, tu consider the appli-
cation of the method of differential correction to the estimation of the
parameters in this formula., A straight line may be fitted by eye to the
linear tran..ormation of the data to obtain starting values a, and hg. By
the method of differential correction, we wish to obtain corrections A a,
and & bo such that improved estimates will be

al = a9 + A &g

bl = bo + & bg

If a)} and b) still do not meet the requirements for accuracy, they may then
be used as estimates to obtsin new values for the corrections, and kence
improved estimates

32 = 3) + 4

02 = b) + & b).
The process may be repeated s msany times as necessary Lo obtsin the desired
precision. The two methods for obtaining the values of the corrections are
fllustrated below.

Example I: Pictting y = adX by the General Laast-Squares Method for
Nonlinear Yaramaters

Given the function
f (x; a, b) »wyw ab¥, 9

its partial derivatives with respect to the parametars are

] o -

8{:.“" 8-%-;..0!50“-
Then the lineavized eqution [Snuation (6)] ts

Yy Yoo bo" D a ¢ apx be"’ abd, . 10)
vhere

Yo = t ({ H 89, bo) - 8o bo‘.




Ay=0a

x-1

Ap=4b Zy = ay x by

the regression equation becomes

R-AOZ°+A121

and may be solved for Ay and Aj (i.e., the values of the corrections) by
the usual least-gquares procedure.

Fitting y = ab® vy the Simplified Method for Equations

Example 2:
Containing both Linear and Nonlinear Pariaeters

Using Turner's method, only the ncu-

Again congider Equation (9).
The linearized

linear parameter b need be assigned a starting value bg.
equation [comparable to Equation (8)] takes the form

ymaboX+ axbx-lab (11)

1f we set

Bo-l XO'box

Bleadd X1 » xbo%-!

the regression equation becomes

y = Bo Xo + B1 X).

This equation may be solved by the swthod of least squaras to obtaia By
and B}. The valuz fcr By yields the value of 8, vhich in turn, can be

used with the value of B) to solve for A b.

€. SYEEDING THE CONVERCENCE

In mary cases, convergence is slow due to the oscillations of the para-
Teter estimates about the trus value. It has baen found that these oscil-
lations may be damped by adding only a fractional part of the corrections
to the paraweter estimstes when obtaining new vatimates. Then parameter
ectimates to be used {n the next cycie of tteration will be of the form

al wag+ 0 & ap

by @ by + @ A by

vhere @ will usually, but not alwuys, be less than one.



® specifically discusses the use of a multiplier to accelerate

Weostein®
convergence., Turnerla, Howellla, and Wi11'® employ such a facter in per-
forming the least-squares iterative procedure. Box*” descrihes the
Princeton-IBM 704 program, which computes the optimum value .f 8 before
obtaining the parameters of the function by noulinear least squares.

F. [ITSCUSSION

It may be noted that the method of d‘fferential corrcetion is a
generalization of the least-squares process we commonly use fcr equations
involving only linear parameters. This general method, therefore, may be
used for any function, whether it contains linear, nonlinear, or a combina-
tion of the two types of parameters. In particular, if the general least-
squares procedure is applied tc an equation having only linear parameters,
and the initial estimates ag, bg, "o are each taken to be zero, then the
corrections & a, A b, A c arrived at in the solution are simply the values
a, b, ¢ of the parameters themselves, <o that the general method reduces to
the special case we generally employ.

Often the mathematical model for an experiment is written in terms of -
a differential equation. Such an equation sometimes canno. be integrated
explicitly, so that the partial derivar lves of the functiun cannot be
obtained by direct differentiation. Box'’ suggests that if small changes
are made in each of the parameters in turn, the numerical value of the
derivatives may be calculated from the differences.

Unfortunately, there are times when even the use »f rhe 0 multiplier
does not improve convergence satisfactorily. For additional considexration
of the convergence problem, the reader may refer to the paper by lot", who
has had considerable experience with the nonlinear least-squares process.

P




27

IV. LINEAR COMBINATIONS OF EXPONENTIALS

Experimentai data are frequently frund to be well represented by sums
of exponentials of the general form

n
y =T A{ e-biX
iml

As a result, a number of methods for estimation of the parameters of such
a function have been investigated and reported in the literature. Some of
thece methoda will be mentioned briefly here. For the details, direct
reference should be made to the literature, '

Peurzeig and Tylet" have illustrated clearly the graphical "peeling
of ' procedure explained in itexm (14) of Table I. They have extended the
method to the case of an equation containing more thzz two terms, but the
parameter estimates obtained are only approximite, A method developed Ly
Prony and discussed by Whittaker and Robinson'® R Corne11?° , and Cor~fleld
et al®’, can sometimes be used to advantage in obtaining initial estimates
for later refinemant by one of the iterative procedures. Iterative maximum
likelihood techniques, one of which is similar to the iterative least-
squares procedure, are briefly reviewed by Cornel1®?,

Taylo?® used difference equations in his method of sttacking the
problem, The paramester estimatea obtained by his process, however, have
not baen found to be as consistently accurate as those calculated by soms
of the othar methods.

.. Commell*® has developed an effective noniterative procedure for fitting
a fairly general class of linear combinations of rxponentisls to data taken
at equally spaced {atervals, Re dervives expressitms that employ as many
sums of the observations as there are paramsters 'o be estimated, MHis
method has two advantages over the Prony method; it does not place s limit
on the number of observations, and it does not retuire least-squares
calculations.

Hartlay's "Internal least SQuAruv" is a fairly well-known ssthod that
can be applied to functions having linesr differential equations, end hence
to linear combinations of exponentials, hacruse they are generated dy
linear differential equations. The linear difference squation corresponding
to the differentisl «quation ia integrated numerically. 1In the resulting
regression equation "the depandent variate y is relsated to {ts owm repeatad
suma as independent variables.®?® The principle of lesst squares is then
appiied to this regression equation.




28

V. ASYMPTOTIC REGRESSION

A. INTRODUCTION

Curves that asymptotically approach a limit are often appropriate for
representation of experinental data. The modified exponential equation
y=a+ Be* has been used widely to express such relationships. This
formula is a particularly useful one, because simple transformations will
reduce several other equations to the same general forw. The logistic,
Gompertz, and Mitscherlich equations are common variations, and much study
has been devoted to each of these individusl curves, as well as to the
general modified exponential. Graphs of various forms of the modified
exponential are provided in Figures 5, 6, and 7. A comparison of the pro-
perties of the various forms of the equation has been nade by Croxton and
Cowden“ . They note that, vhen ihe x values of the function are equally
spaced, the first differences oi y change by & constant parcentage in the
modified exponential, wheress the first differences for the logistic resesble
a normal curve, and for Gompertz's law resemble & skewed frequency curve.

B. BESTIMATION OF THE PARAMETERS

The methods available for estimation of the paramaters in an asymptotic
regression are numerous. In addition to the general methods for exponentials
discussed in Section IV, other asthods suitable for functions of the specific
form y » a + pp* have baen reportad. Cowded”® has treated a ssthod of
selected poluts and a graphical method. Kelder'@® approach is based on
{nternal least squares. Stevend’ has developed an iteretive mathod and
provided tables to facilitate ite application. vattersod®*° presents
formulas for obtaining a fairly accurate estimste of s that may be usad
subsequently as a starting value for Stevens' mathod ¢r to obtain approxi-
mate values of a and B from the linsar regression of * onp".

The fora y = A [1-10°6(x#D)] of the modified exporantial {s known as
Mitscherlich's law. Nmnnl-co.u" has applied this fors of the equation
to & series of experiments on fertilisers. His wathod of parsmeter estima-
tion has been used widely and found very accepcabdble. An extension of
Gowss' and Stevans' table: has been provided by Byrd, Jones, ot _l_L.‘

C. OOMPERTZ CURVR

The Gompertc curve, y « kab®, can be deslt with by the methods slready
explained 1f ths equatien 1s transformed by logarithms to the fore
logy = log k ¢ (log a) d%. Specific formulas are aleo availadle for direct
estimation of the parameters from the <'rt’lul form of the Gomperts equation.
Kenney’®, Devie®, and Croxton and Cowder®® have trested the GComperts curve
{n particular, and they have presinted appropriate formulas for its solution.
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D. LOGISTIC CURVE

the logistic, whose

One of the most widely used asymptotic cnurves {is
equation is

k
Y ¥ Tres¥bx

Taking reciprocals will transform the logistic to

+ - o8 (eb)x

L
L

1.
y

which is, again, & modified exponential. Such a transformation is rarely
performed, however, because the .2thods of dealing with the logistic itself

are so numerous,
One of the simplest and best known vays of obtaining psrsmeter estimates
is the transformation of the equation into the form

in kiz - a4+ bx

which is a straight line on seaui-logarithmic g’nph paper whan x {s plotted
against (k-y)/y. Paarl * and Reed and Berkeon®® have {ilustrated this
uethod of fitting, and have also given good discussions of the general

propsrties of the logistic function.

Berkeon’®~?" has provided graph paper scaled im such a vay that the
linear relation mey be obtained by plotting x directly sgainst y/k.
Berkson's "logit rpu" is similar to an earlier logivtic grid reported by

’ explains a “transfer method which can de ueed to ‘tq.:ovc

Wileon®® . Hodges
the estimates obtained from the linear plot on logit paper.” Berkson®®’*°

has also provided tadles for the logit and antilagit, to facilitate the
determination of tha maximum likelihood estimate 0¢ the logistic function.

;{mm othar linsar transformstions of the logistic have bean developed.
Nair " gives s very good summary of five transformations that are based on
the diffarentisl equation of the logistic or on some form of the corresponding

difference equation.



A generalization of the logistic sometimes provides a better fit for
a set of experimenta’l data. Terms may be added to the exponential to alter
the shape of the curve apprcoriately. The general logistic is given in the
form

k
4 1 + eatbxtcx&h, .,

where the number of terms in the exponeut is determined by the Lype of fit
desived. Figure 7 illustrates the difference between a simple logistic .
curve and a more general logistic, whore exponential is quadratic. 3ailei"
has published some tables for use in fitting the generalized logistic.

There are many other equations that can be used to represent symmetrical
growth curves besides that of the logistic function. Questions often arire
as to which equation would - mnst appropriate for a certain set of data.

An interesting article by Winsor*? compares the logisric with the integrated
normal curve, the arc-tangent curve, and the integrated Pearson Type VIY
curve.




V1. POLYNOMIALS

The use of polynomials in curve fittirng ‘s extremely common and easily
achieved. The method of least squares yields parameter estimates immediately,
because all parameters in the polynomial equation are linezsr. W¥hen the x .
values of the data are equally spaced, the successive differences .f the
y values may be examined as an aid in determining the appropriate number
of terms for a polynomial that will represent the data ndcquntely’ . Under
this condition, 1f the nth differences of the y'a are constant, then the
last term in the required polynomial will be xM. 1t {s advantageous to use
orthogonal polynomial equations when the degree of the polynomial needed to
fit the data satisfactorily is not known, Orthogonal polynomials enable
higher degree terms to be added to the equation without changing the coeffi-
cients of the praviously fitted polynomial. Host textbooks describe the
technique of using orthogonal polynomials in curve fitting. Paradine and
Rivett*®, in particular, give a good exposition of the sulject.

Because of the general familiarity with the w«thods of polynomial repr s~
sion, polynomials are often overused for curve fictting. 1In spite of the
fact that a polynoaial can be found to fit any set of data if a sufficient
nuaber of terms &re taken, there {s often very little biological or physical
significance for the parameters of the resulting polynomial. Considerable
thought should be giver, therefore, to the physical basis of ths prodlesm,
in order to determine 'shather theve is any merit in using a polynomial to
represent it. Sonstimes, of course, it is helpful to use a polynomial as
an approximation to another function for which the direct estimation of the
paramsters would have buen difficult or impossibdle.




VII. FREQUENCY DISTRIBUTIONS

The general tcpic of frequency distributions is well known to statis-
ticians and fully covered in statisticai textbooks. It seems unn2cessary,
trerefore, to include in this paper any lengthy discussica of the subject.

An important class of frequency functions arising from the solutions
of a certain first-order differential equation is the Pearsonian system of
curves. A comprehensive treatment of this family of curves {s given by
Elderton'® Other good references on the subject, in addition to the
writings of Karl Pearson himself, are the diacussions given by Pcters and
Van Voorhis*® . Kenney and Keeping ’ Carvet’., Ctaig , and Kendal

The familiar normal curve is one of the types of curves included in
the Pearsonian system. FPor a discussion of the use of "probability paper”
to effect a iinear transformation of the 1ntegtated normal curve, reference

may be made to Finney's Probit Analysis®?

Methods of parameter estimation commonly used for frequency distri-
butions are the method of moments, the principle of waximum likelihood,
aid the minimum chi-squared process. These procedures are presented in
standard textbooks and in the references given for the Pearsonian curves.
1t should be noted that the use of these methods is not restricted to the
fitting of frequency distributions. An application of the method of
raximum 1ikclihood to curve fitting in general as reviewed by Cornell*®,
and 0'Toole®® applies the mathod of moments to a fairly general class ot
tunctions.




VIII. SUMMARY

This paper is offered as a guide for t'.. se persons who seek to represent
o . experimental data by some appropriate mathematical expression, For straight-
line transformations and the general method of differential correction, it .
should be pnssible to work directly from this paper. For the othcr methods
tr:ated in less detail, the discussion should secve to indicate the literature
avuilable on the particular topic of interest to the experimenter, .

It is emphasized that this paper deals with only the various types of
curves and the mathematical techniques for fitting them to experimental
data, An experimeuter needs such general i{nformation as a background for
the mathematical interpretation of his problem. Another extremely important
consideration, however, is the biological or physical significance of the
dats being analyzed. No msthematical expression can bc c-msidered adequate
for representing experimental data unless it has evolved [rom the phyasical
basis of the problem, Such scientific analysis of the problea should be
conducted before the techniques of curve fitting are applied.
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